

Town of Georgetown, Water Department 1 Moulton Street Georgetown, MA 01833 01/27/23 Report# 60653

NEL# A65441: West St WTP F	inish Water collected 01/04/23	at 07:45 by JH	and rec	eived at NEL	01/04/23 at 08:	20 by SA.		
Parameter	Result	DL	PQL	Method	Analyzed	Ву	Lab	Cert.*
See attached for results of Perfluor	inated Alkyl Acids (PFAS) analysis by	EPA 573.1. Sam	ple ID: L2	300885-01.				
NEL # A65442: Field Blank col	lected 01/04/23 at 07:47 by JH	and received	at NEL 01	/04/23 at 08	·20 by SA			
		and received		./ 04/ 25 at 00	.20 by 5A.			
Parameter	Result	DL	PQL	Method	Analyzed	Ву	Lab	Cert.*
See attached for results of Perfluor	inated Alkyl Acids (PFAS) analysis by	FPA 573 1 Sam		300885-02				

*Analyses conducted in accordance with MA DEP certification standards for potable water (P) or non-potable water (N) unless noted otherwise.

Not Detected (ND) indicates that if the analyte is present, the concentration is below the detection limit. Detection Limit (DL) is the method detection limit adjusted for dilutions. Reported concentrations that fall between the DL and Practical Quantification Limit (PQL) are estimated.

MMCL=Massachusetts Maximum Contaminant Level SMCL=US EPA Secondary Maximum Contaminant Level MRDL=Maximum Residual Disinfectant Level ORSG=Office of Research and Standards Guideline

tyle f. Marat

Tyler F. Marcet Laboratory Director

60053

Northeast Environmental Laboratory, Inc. 41 Dayton Street, Danvers, MA 01923 (978) 777-4442

Date Received:

January 4, 2023

CHAIN OF CUSTODY

PFAS

Comp		3105000 wn Water	Departmer		rcha	se Orde	r °	Project #	LS	Project Na	ime		Water 7	Treatme	nt Plan	t	Turn Ar	ound Time
Conta	ct Person		Address				E-mail	-	neı			ANAL	SIS RE	QUIRE	D			
Jim (Gallagher		1 Moulton S	Stree	et		jgallaghen Cloborg	etownma.go	Ω.									
City		State	ZIP			Phone	: (978) 352-5750	-	5							1.0		
Geo	rgetown	MA	01833-194	13		Fax:	(978) 352-5706		8							1		
	LAB I.D.	Date	Time							œ	EC_PFC18							
Bot #				COMP	GRAB	MATRIX	Sample Locat	ion / Source	No. of	CONTAINER	537.1_DW_PREC_PFC18							
	A65441	1/4/2023	7:45AM		X		West St WTP Fin	ish Water	2	250mL	X							
	A65442	1/4/2023	7:47AM		X	DW	Field Blank		1	250mL	X							
						1.14												
					\square													
				-	-													
				+	+													
				+	-													
				+	+												1	
				+	+												-	
Motrix		Natar Cl	N=Croundwate		Soil	0-01	SL=Sludge WW=Wast V	Mator	Some	l oler's Signa	turo	a c ma	4	6	1	-	-	
								valei	1		luie J	GRAB	/	Mrs /	- un			
and the other desides the state of the state	Douting	El L=LOW (NO	Odor) M=Mee	aium	H	=Hign	U=Unknown		Samp	oler Type:	Turr			me (T		Surah	orgoo	
RS	and the second se		and / Nequests								Turr				1		arges	
RW	Raw Wate Special	er 1							-	6 Working	Dava		1 (7-10	Working			ays = 75%	4
	uished by: (S	Signature)	Date / T	ime	1	Receiv	ed by: (Signature)	Date / Time	1. 1 1. 1. 2	5 Working						urs = 1	-	0
	son Hamm	0 0	1/4/2023 8:20a		C	;	0	Date / Time 01/04/23 08:20	" TA	4 Working T begins w	Days	= 50%	racaiva	t at tost	24 Ho	urs = 1		
	uished by: (S	(Date / T		P	Receiv	ved by: (Signature)	Date / Time		T for sample					-	the nex	t bussine	ss day
				_						TAT's are s								

ID√ ____ COC√ ___

ANALYTICAL REPORT

Lab Number:	L2300885
Client:	Northeast Environmental Lab 41 Dayton Street Danvers, MA 01923
ATTN: Phone:	Susan Tropeano (978) 777-4442
Project Name:	60653
Project Number:	60653
Report Date:	01/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:01272314:39

 Project Name:
 60653

 Project Number:
 60653

 Lab Number:
 L2300885

 Report Date:
 01/27/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2300885-01	A65441	DW	Not Specified	01/04/23 07:45	01/06/23
L2300885-02	A65442-FIELD BLANK	DW	Not Specified	01/04/23 07:47	01/06/23

 Project Name:
 60653

 Project Number:
 60653

Lab Number: L2300885 Report Date: 01/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Project Name:
 60653

 Project Number:
 60653

 Lab Number:
 L2300885

 Report Date:
 01/27/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by EPA 537.1

The WG1733286-2 LCS recovery, associated with L2300885-01 and -02, is above the acceptance criteria for perfluorotetradecanoic acid (pfta) (178%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ashly Boucher Ashley Boucher

Authorized Signature:

Title: Technical Director/Representative

Date: 01/27/23

ORGANICS

SEMIVOLATILES

			Serial_No	0:01272314:39
Project Name:	60653		Lab Number:	L2300885
Project Number:	60653		Report Date:	01/27/23
		SAMPLE RESULTS		
Lab ID:	L2300885-01		Date Collected:	01/04/23 07:45
Client ID:	A65441		Date Received:	01/06/23
Sample Location:	Not Specified		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Dw		Extraction Method	l: EPA 537.1
Analytical Method:	133,537.1		Extraction Date:	01/13/23 15:50
Analytical Date:	01/17/23 00:17			
Analyst:	CAP			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by EPA 537.1 -	Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab								
Perfluorobutanesulfonic Acid (PFBS)	0.686	J	ng/l	2.00	0.636	1			
Perfluorohexanoic Acid (PFHxA)	0.800	J	ng/l	2.00	0.636	1			
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00	0.636	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.636	1			
Perfluorohexanesulfonic Acid (PFHxS)	0.686	J	ng/l	2.00	0.636	1			
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.636	1			
Perfluorooctanoic Acid (PFOA)	1.75	J	ng/l	2.00	0.636	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.636	1			
Perfluorooctanesulfonic Acid (PFOS)	1.30	J	ng/l	2.00	0.636	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.636	1			
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00	0.636	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00	0.636	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.636	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.636	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.636	1			
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00	0.636	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.636	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.636	1			
PFAS, Total (6)	ND		ng/l	2.00	0.636	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	99	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	83	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	104	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	103	70-130	

			Serial_No:	01272314:39
Project Name:	60653	Lab N	umber:	L2300885
Project Number:	60653	Repor	rt Date:	01/27/23
		SAMPLE RESULTS		
Lab ID:	L2300885-02	Date Co	ollected:	01/04/23 07:47
Client ID:	A65442-FIELD BLANK	Date Re	eceived:	01/06/23
Sample Location:	Not Specified	Field Pr	ep:	Not Specified
Sample Depth:				
Matrix:	Dw	Extracti	on Method:	EPA 537.1
Analytical Method:	133,537.1	Extracti	on Date:	01/13/23 15:50
Analytical Date:	01/17/23 00:25			
Analyst:	CAP			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab)				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.674	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.674	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00	0.674	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.674	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.674	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.674	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.674	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.674	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.674	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.674	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00	0.674	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00	0.674	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.674	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.674	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.674	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00	0.674	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.674	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.674	1
PFAS, Total (6)	ND		ng/l	2.00	0.674	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	109		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	88		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	100		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105		70-130	

 Lab Number:
 L2300885

 Report Date:
 01/27/23

 Project Name:
 60653

 Project Number:
 60653

Method Blank Analysis Batch Quality Control

Analytical Method:13Analytical Date:0Analyst:C

133,537.1 01/16/23 21:15 CAP Extraction Method: EPA 537.1 Extraction Date: 01/13/23 15:50

arameter	Result	Qualifier	Units	RL	M	DL
erfluorinated Alkyl Acids by EPA 53	87.1 - Mans	sfield Lab fo	or sample(s):	01-02	Batch:	WG1733286-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.6	668
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.6	668
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00	0.6	668
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.6	68
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.6	568
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.6	668
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.6	668
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.6	668
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.6	568
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.6	568
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00	0.6	668
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00	0.6	668
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.6	668
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.0	68
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.6	68
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00	0.6	68
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.6	68
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.6	668
PFAS, Total (6)	ND		ng/l	2.00	0.6	668

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	114		70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	94		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	101		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	108		70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2300885

Report Date: 01/27/23

rameter	LCS %Recovery (LCSD Qual %Recovery	%Recover Qual Limits	ry RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 537.1 ·	Mansfield Lab Associa	ated sample(s): 01-02	Batch: WG1733286-2		
Perfluorobutanesulfonic Acid (PFBS)	102		70-130	-	30
Perfluorohexanoic Acid (PFHxA)	115	-	70-130	-	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	95	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	112	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	97	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	115	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	110	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	116	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	96	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	107	-	70-130	-	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	100	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	113	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	110	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	105	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	108	-	70-130	-	30
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	98	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	120	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	178	Q -	70-130	-	30

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 60653

 Project Number:
 60653

Lab Number: L2300885

Report Date: 01/27/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 - N	lansfield Lab Asso	ociated sam	nple(s): 01-02 Ba	atch: WG1	733286-2				

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	110				70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	92				70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	101				70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	108				70-130	

Matrix Spike Analysis Batch Quality Control

 Project Name:
 60653

 Project Number:
 60653

 Lab Number:
 L2300885

 Report Date:
 01/27/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by El Sample	PA 537.1 -	Mansfield Lab	Associated	sample(s): 01-02	QC Batch ID:	WG1733286-3	QC Sample: L230	0201-01	Client ID: MS
Perfluorobutanesulfonic Acid (PFBS)	1.98J	34	34.5	101	-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	4.38	38.3	47.1	111	-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	38.3	36.8	96	-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	4.38	38.3	48.3	115	-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	3.05	35	37.4	98	-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	36.2	40.2	111	-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	9.72	38.3	53.9	115	-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	1.03J	38.3	48.0	125	-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	6.29	35.6	41.9	100	-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	38.3	42.7	111	-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	35.7	36.9	103	-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	38.3	44.1	115	-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	38.3	42.2	110	-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	38.3	44.4	116	-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	38.3	40.7	106	-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	36.2	38.2	106	-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	38.3	45.8	119	-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	NDZ	38.3	74.4	194	Q -	-	70-130	-	30

Matrix Spike Analysis

		Batch Quality Control		
Project Name:	60653	Batch Quanty Control	Lab Number:	L2300885
Project Number:	60653		Report Date:	01/27/23

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Perfluorinated Alkyl Acids by Sample	EPA 537.1 - M	lansfield Lab	Associated	l sample(s): 01-02	2 QC Ba	atch ID: W	/G1733286-3	QC Sa	mple: L230	0201-01	Clie	nt ID: MS

	MS	;	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
- 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	91				70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	112				70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	101				70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	106				70-130	

Lab Duplicate Analysis Batch Quality Control

Project Number: 60653

60653

Project Name:

Lab Number: L2300885 01/27/23 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 537.1 - Mansf JP Sample	ield Lab Associated sample(s): 01-02 QC Batch ID:	WG1733286-4	QC Sa	mple: L2300201-03 Client ID:
Perfluorobutanesulfonic Acid (PFBS)	1.80J	1.74J	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	3.28	3.24	ng/l	1	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	2.89	2.85	ng/l	1	30
Perfluorohexanesulfonic Acid (PFHxS)	1.83J	1.81J	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	6.91	6.79	ng/l	2	30
Perfluorononanoic Acid (PFNA)	0.937J	0.887J	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	4.68	4.74	ng/l	1	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Project Name: Project Number:	60653 60653		cate Ana uality Contro			Lab Number: Report Date:		L2300885 01/27/23	
Parameter		Native Sample	Duplicate	Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acid DUP Sample	s by EPA 537.1 - Mansfi	eld Lab Associated sample(s)): 01-02 G	C Batch ID:	WG1733286-4	QC Sar	mple: L230	0201-03	Client ID:
Surrogate			% Becoverv	Qualifier 9			cceptance	•	

Surrogate	%Recovery	Qualifier %Recovery Qualif	fier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102	102	70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	86	85	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	100	99	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	106	105	70-130	

Project Name: 60653 Project Number: 60653

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container	ID Container Type	Cooler	рН	pН	deg C Pres		Seal	Date/Time	Analysis(*)
L2300885-01A	Plastic 250ml Trizma preserved	А	NA		2.3	Y	Absent		A2-MA-537.1(14)
L2300885-01B	8 Plastic 250ml Trizma preserved	А	NA		2.3	Y	Absent		A2-MA-537.1(14)
L2300885-02A	Plastic 250ml Trizma preserved	А	NA		2.3	Y	Absent		A2-MA-537.1(14)

YES

Project Name: 60653

Project Number: 60653

Serial_No:01272314:39 Lab Number: L2300885 Report Date: 01/27/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA/PFTeDA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)	5001/25001	
Perfluorooctanesulfonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES	NEtFOSE	1001.00.0
N-Ethyl Perfluorooctanesulfonamido Ethanol		1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid N-Methyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA NMeFOSAA	2991-50-6
	NMEFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		700054 00 0
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS 9CI-PF3ONS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name: 60653

Project Number: 60653

Serial_No:01272314:39 Lab Number: L2300885 Report Date: 01/27/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Serial_No:01272314:39

Project Name: 60653

Project Number: 60653

Lab Number: L2300885

Report Date: 01/27/23

GLOSSARY

Acronyms

Actonyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	60653	Lab Number:	L2300885
Project Number:	60653	Report Date:	01/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- \mathbf{F} - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: 60653

Project Number: 60653

Serial_No:01272314:39

Lab Number: L2300885

Report Date: 01/27/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Project Name:
 60653

 Project Number:
 60653

 Lab Number:
 L2300885

 Report Date:
 01/27/23

REFERENCES

133 Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:01272314:39

1/6/23

41 DAYTON STREET DANVERS, MA 01923-1015 978.777.4442 **DEP # M-MA123**

Chain of Custody

NEL Report 60653

	NEL Id.	Sample Type	Date Collected	Time Collected	Preservation	# of samples	Analyses Requested
-01	A65441	Drinking Water	01/04/23	7:45	Trizma	2x250mL	PFAS: (HFPO-DA, NEtFOSAA, NMeFOSAA, PFBS, PFDA, PFDoA, PFHpA, PFHxS, PFHxA, PFNA, PFOS, PFOA, PFTA, PFTrDA, PFUnA, 11Cl- PF3OUdS, 9CI-PF3ONS, ADONA) (18 compounds)
-02	A65442	Field Blank	01/04/23	7:47	Trizma	1x250mL	PFAS: (HFPO-DA, NEtFOSAA, NMeFOSAA, PFBS, PFDA, PFDoA, PFHPA, PFHxS, PFHxA, PFNA, PFOS, PFOA, PFTA, PFTrDA, PFUnA, 11CI- PF3OUdS, 9CI-PF3ONS, ADONA) (18 compounds)

Please analyze by method 537.1, non-isotope dilution method. Isotope dilution not needed; sample is drinking water.

Date & Time:

haver ayluard Relinquished by:

1n/n Received by: 1231 1633

Northeast Environmental Laboratory, Inc.

Alpha Analytical Laboratories

Relinquished by:

Received by: lylin m Date & Time: 1/4/23 1720

- Alpha Analytical Laboratories My 16/23 2020

Alpha Analytical Laboratories 1/6/03 1720 His Hold 1/6/23 1930 Page 24 of 24 R. Mar On 1/6/23 2030